References

[1]J. M. Aaslyng, J. B. Lund, N. Ehler, and E. Rosenqvist. IntelliGrow: a greenhouse component-based climate control system. Environmental Modelling & Software, 18(7):657–666, September 2003. doi:10.1016/S1364-8152(03)00052-5.
[2]Queralt Altes-Buch and Vincent Lemort. Modeling framework for the simulation and control of greenhouse climate. In Proceedings of the 10th International Conference on System Simulation in Buildings. Liege, December 2018.
[3]Queralt Altes-Buch, Sylvain Quoilin, and Vincent Lemort. Modeling and control of CHP generation for greenhouse cultivation including thermal energy storage. In Proceedings of the 31st international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, 13. Guimaraes, Portugal, June 2018. URL: https://orbi.uliege.be/handle/2268/226034.
[4]B. J. Bailey. Control strategies to enhance the performance of greenhouse thermal screens. Journal of Agricultural Engineering Research, 40(3):187–198, July 1988. doi:10.1016/0021-8634(88)90206-5.
[5]Luc Balemans. Assessment of criteria for energetic effectiveness of greenhouse screens. PhD thesis, Agricultural University, Ghent, 1989.
[6]G.P.A Bot. Greenhouse climate : from physical processes to a dynamic model. PhD thesis, Wageningen University, 1983.
[7]T. Boulard and A. Baille. A simple greenhouse climate control model incorporating effects of ventilation and evaporative cooling. Agricultural and Forest Meteorology, 65(3):145–157, August 1993. doi:10.1016/0168-1923(93)90001-X.
[8]Kinsell L. Coulson. Solar and Terrestrial Radiation. Elsevier, 1975. ISBN 978-0-12-192950-3. doi:10.1016/B978-0-12-192950-3.X5001-3.
[9]E. Dayan, H. van Keulen, J. W. Jones, I. Zipori, D. Shmuel, and H. Challa. Development, calibration and validation of a greenhouse tomato growth model: I. Description of the model. Agricultural Systems, 43(2):145–163, January 1993. doi:10.1016/0308-521X(93)90024-V.
[10]H.F. De Zwart. Analyzing energy-saving options in greenhouse cultivation using a simulation model. PhD thesis, Wageningen University, 1996.
[11]J Dieleman, E Meinen, L.F.M. Marcelis, Zwart , and E.J. Van Henten. Optimisation of CO2 and Temperature in Terms of Crop Growth and Energy Use. Acta Horticulturae, October 2005. doi:10.17660/ActaHortic.2005.691.16.
[12]J.A. Dieleman and F.L.K. Kempkes. Energy screens in tomato: determining the optimal opening strategy. Acta Horticulturae, pages 599–606, October 2006. doi:10.17660/ActaHortic.2006.718.70.
[13]J.A. Dieleman, L.F.M. Marcelis, A. Elings, T.A. Dueck, and E. Meinen. Energy Saving in Greenhouses: Optimal Use of Climate Conditions and Crop Management. Acta Horticulturae, pages 203–210, October 2006. doi:10.17660/ActaHortic.2006.718.22.
[14]A. Elings, H. F. de Zwart, J. Janse, L. F. M. Marcelis, and F. Buwalda. Multiple-day temperature settings on the basis of the assimilate balance: a simulation study. Acta Horticulturae, 2006.
[15]J. R. Evans and G. D. Farquhar. Modelling canopy photosynthesis from the biochemistry of the C3 chloroplast. In Modeling crop photosynthesis - from biochemistry to canopy (Eds. K.J. Boote, R.S. Loomis), pages 1–15. CSSA Madison, Wisconsin, USA, 1991.
[16]R. I. Grange and D. W. Hand. A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science, 62(2):125–134, January 1987. doi:10.1080/14620316.1987.11515760.
[17]Ariane Grisey and Eric Brajeul. Serres chauffées: réduire ses dépenses énergétiques. Centre technique interprofessionnel des fruits et légumes (CTIFL), 2007.
[19]I. Impron, S. Hemming, and G. P. A. Bot. Simple greenhouse climate model as a design tool for greenhouses in tropical lowland. Biosystems Engineering, 98(1):79–89, September 2007. doi:10.1016/j.biosystemseng.2007.03.028.
[20]T. de Jong. Natural ventilation of large multispan greenhouses. PhD thesis, Wageningen University, 1991.
[21]A. N. M. de Koning. Development and dry matter distribution in glasshouse tomato : a quantitative approach. PhD thesis, Wageningen University, Wageningen, 1994. URL: http://library.wur.nl/WebQuery/wurpubs/24498.
[22]P. A. Leffelaar and Th J. Ferrari. Some elements of dynamic simulation. In Simulation and systems management in crop protection, pages 19–45. Pudoc, Wageningen, 1989. URL: http://library.wur.nl/WebQuery/wurpubs/8869.
[23]R. Linker, I. Seginer, and F. Buwalda. Description and calibration of a dynamic model for lettuce grown in a nitrate-limiting environment. Mathematical and Computer Modelling, 40(9):1009–1024, November 2004. doi:10.1016/j.mcm.2004.12.001.
[24]Weihong Luo, Hendrik Feije de Zwart, Jianfeng DaiI, Xiaohan Wang, Cecilia Stanghellini, and Chongxing Bu. Simulation of Greenhouse Management in the Subtropics, Part I: Model Validation and Scenario Study for the Winter Season. Biosystems Engineering, 90(3):307–318, March 2005. doi:10.1016/j.biosystemseng.2004.11.008.
[25]L. F. M Marcelis, E Heuvelink, and J Goudriaan. Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74(1):83–111, April 1998. doi:10.1016/S0304-4238(98)00083-1.
[26]Sylvain Quoilin, Adriano Desideri, Jorrit Wronski, Ian Bell, and Vincent Lemort. ThermoCycle: A Modelica library for the simulation of thermodynamic systems. In Proceedings of the 10th International Modelica Conference 2014. 2014.
[27]Sylvain Quoilin, Konstantinos Kavvadias, Arnaud Mercier, Irene Pappone, and Andreas Zucker. Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment. Applied Energy, 182:58–67, November 2016. URL: http://www.sciencedirect.com/science/article/pii/S0306261916311643, doi:10.1016/j.apenergy.2016.08.077.
[28]J Ross. Radiative transfer in plant communities. In Vegetation and Atmosphere (Ed. J. L. Monteith), pages 13–55. Academic Press, London, UK, 1975.
[29]Ido Seginer, Christian Gary, and Marc Tchamitchian. Optimal temperature regimes for a greenhouse crop with a carbohydrate pool: A modelling study. Scientia Horticulturae, 60(1):55–80, December 1994. doi:10.1016/0304-4238(94)90062-0.
[30]C. Stanghellini. Transpiration of greenhouse crops : an aid to climate management. PhD thesis, Wageningen University, 1987.
[31]Laurent Urban and Isabelle Urban. La production sous serre: La gestion du climat. Volume 1. Lavoisier, 2nd edition, 2010.
[32]R. J. C. van Ooteghem. Optimal Control Design for a Solar Greenhouse. IFAC Proceedings Volumes, 43(26):304–309, January 2010. doi:10.3182/20101206-3-JP-3009.00054.
[33]B. H. E. Vanthoor, P. H. B. de Visser, C. Stanghellini, and E. J. van Henten. A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosystems Engineering, 110(4):378–395, December 2011. doi:10.1016/j.biosystemseng.2011.08.005.
[34]B. H. E. Vanthoor, C. Stanghellini, E. J. van Henten, and P. H. B. de Visser. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(4):363–377, December 2011. doi:10.1016/j.biosystemseng.2011.06.001.